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Irreducible periodic case

This argument used explicitly aperiodicity. Indeed its conclusion is not
true for periodic chains. Nonetheless it has consequences for periodic
irreducible chain. We know that an irreducible chain has a single period d .
If the chain is periodic, then d > 1. We suppose that to be the case. In
that case for j ∈ I we can define D0 to be the set of sites so that for some
n, pndjk > 0. So equivalenetly, k ∈ D0 if and only if pndjk > 0 for all n large.

We can then define for 0 ≤ r < d ,Dr = {k : pnd+r
jk > 0} for some n =

{k : pnd+r
jk > 0} for all n large.



Irreducible periodic case

It is easily seen that if i ∈ Ds , k ∈ Dt , then pnik > 0 only if s + n is
congruent to t mod(d).

Thus starting at,say, j the chain moves from D0 to D1 to D2 and so on
mod(d). The transition matric Pd is irreducible on D0, on D1 . . but not
on I .

Theorem
If π is invariant distribution for periodic irreducible Markov chain then for
Dr as above, for fixed r

lim pnd+r
jk = dπ(k)

for every k ∈ Dr

Remark: Obviously if k is not in Dr , then for every n, pnd+r
jk = 0.



Reversible Proceses

An important class of Markov chains are socalled Reversible processes: A
Markov chain is reversible with respect to a measure π if
∀x , y ∈ I , π(x)p(x , y) = π(y)p(y , x). Most chains are not reversible with
respect to a distribution or measure. However

Theorem
If distribution π is such that P is reversible with respect to it, then π is
invariant for P.
Proof: Fix x.

π(x) =
∑
y

π(x)p(x , y) =
∑
y

π(y)p(y , x)



Examples

We first consider irreducible birth and death chains. IF the chain has an
invariant law π, then this must be a reversible measure for the process:
For (Xn)n≥0 starting in equilibrium π, we have that for every
A ⊂ N,P(Xn ∈ A does not change. Thus

P(X0 ∈ A,X1 /∈ A) = P(X0 /∈ A,X1 ∈ A)

Apply this to A = [0, n] to get

π(n)pnn+1 = π(n + 1)pn+1n

Given our process only makes nearest neighbour moves, this is enough.



Examples

Thus to see if a B and D chain is positive recurrent we have the following
recipe. We use pi for pii+1 and qi for pii−1.

• Put ν(0) = 1

• Recursively choose ν(n) = ν(n − 1)pn−1/qn =
∏n

k=1 pk−1/qk

• If
∑

k ν(n) = M <∞, then the chian is positive recurrent with
invariant π(n) = ν(n)/M ; otherwise it is not positive recurrent.



Examples contd

Consider a “random walk” on a finite graph G = (V ,E ), : Px ,y = 1
dx

(where dx = the degree of x) if x and y are neighbours; otherwise
Px ,y = 0. Then the measure ν(x) = dx satisfies the detained balence and
so (for a connected graph or equivalently an irreducible chain), the
invariant distribution is ν/M where M =

∑
x dx



Reversibility

If a Markov chain is reversible with respect to probability distribution π,
then if (Xn)n≥0 starts in equilibrium (i.e. Xn has law π∀n), then if we fix
N <∞, then (Yn)0≤n≤N given by Yn = XN−n satisfies for any i0, i1, · · · iN

P(Y0 = i0,Y1 = i1 · · ·YN = iN) = P(X0 = iN ,X1 = iN−1 · · ·XN = i0)

π(iN)piN ,iN−1
· · · pi1i0

But using now reversibility we see

piN−1,iN ,π(iN−1)piN−1,iN−2
· · · pi1i0 = piN−1,iN ,piN−2,iN−1

π(iN−2) · · · pi1i0 · · ·

= π(i0)pi0i1pi1i2 · · · piN−1,iN ,



Reversibility

Theorem
If (Xn)n≥0 is a Markov chain in starting with an invariant probability with
respect to which it is reversible, then for each N

(Xn)0≤n≤N
D
= (XN−n)0≤n≤N



An invariant measure.

Up until now we have really been interested in invariant distributions
rather than invariant measures. Recall a measure on I , ν is simply a
collection of positive values ν(i)i ∈ I . If

∑
i ν(i) <∞ , then we may

divide ν by its total mass to obtain a probability distribution. In later
studies of continuous time process we will need some results on invariant
measures, even if they are not finite.



An invariant measure.

Theorem
For an irreducible recurrent Markov chain fix k ∈ I and define

γ(j) = Ek

(∑
r<Tk

IXr=j

)

Then
• γ(k) = 1
• 0 < γ(j) <∞
• γ is invariant.

Proof (i) is immediate. Secondly, since the chain is irreducible for any
j ,Pk(Tj < Tk) > 0 and Pj(Tk < Tj) > 0. The first inequality implies that
γ(j) > 0 while the second one implies that under Pk , the number of visits
to j before Tk is stochastically dominated by a Geometric random variable
of parameter Pj(Tk < Tj) > 0 and so γ(j) <∞



An invariant measure.
For (iii), just as in the proof of the existence of the invariant probability,
the key element is a temporal shift. Since the chain is recurrent we have
Tk is a.s. finite. Thus

γ(j) = Ek

( ∑
0<r≤Tk

IXr=j

)

Now as before, we can write

γ(j) = Ek

( ∑
0≤r<Tk

IXr=i

∑
i

pij

)

=
∑
i

ν(i)pij

Theorem
If λ is another invariant measure satisfying (i)-(iii) above, then γ = λ.



Proof of Theorem.

We first prove γ ≤ λ. Fix j 6= k , then

λ(j) =
∑
i1

λ(i1)pi1j = λ(k)pkj +
∑
i1 6=k

λ(i1)pi1j

= pkj +
∑
i1 6=k

λ(i1)pi1j

∑
i2

∑
i1 6=k

λ(i2)pi2i1pi1j + pkj =
∑
i2 6=k

∑
i1 6=k

λ(i2)pi2i1pi1j +
∑
i1 6=k

pki1pi1j + pkj

Continuing

=
∑
i3

∑
i2 6=k

∑
i1 6=k

λ(i3)pi3i2pi2i1pi1j +
∑
i1 6=k

pki1pi1j + pkj



=
∑
i3 6=k

∑
i2 6=k

∑
i1 6=k

λ(i3)pi3i2pi2i1pi1j +
∑
i2 6=k

∑
i1 6=k

pki2pi2i1pi1j +
∑
i1 6=k

pki1pi1j + pkj

Continuing to arbitrary many iterations and noting that all terms are
positive we obtain the inequality λ(j) ≥ γ(j).

To complete the arguement we consider invariant measure λ− γ. This is
positive everywhere and zero at k . But by iteration of the invariance, we
must have the difference is zero for every j such that pjk > 0, iterating
again we see λ(j)− γ(j) must be zero for every j with p2jk > 0 and so on.
By ireducibility we have every j must give value zero.



Ergodic Theorem

Theorem
For a positive recurrent irreducible Markov chain (Xn)n≥0 and a bounded f
on I

lim
n→∞

1

n

∑
k<n

f (Xk)→
∑
i∈I

πi f (i)

a.s. over all initial distributions.

The proof is easy. we suppose that f is bounded by 1 i abolute value. We
already know that for any k , the proportion of time spent in state k
converges a.s, to πk , so we get this law of large numbers for all k in any
fixed finite subset of I . Let us fix A ⊂ I finite. Then 1

n

∑
k<n f (Xk) =∑

i

Nn(i)f (i) =
∑
i∈A

Nn(i)f (i) +
∑
i∈Ac

Nn(i)f (i)

where Nn(i) is the proportion of time spent in state i by time n



proof contd

But
∑

i∈A Nn(i)f (i) converges to
∑

i∈A πnf (i). Recalling that f is
bounded by one we get

lim sup
n
|1
n

∑
k<n

f (Xk)−
∑
i∈I

πi f (i)| ≤ 2
∑
i∈Ac

πi



Generalization

We simply observe that for any integer r ≥ 1 (under the previous
conditions)(Yn)n≥0 is an irreducible Markov chain on the set of “possible”
r tuples (i1, i2, · · · ir ) ∈ I r for Yn = (Xn,Xn+1, · · ·Xn+r−1). It has unique
invariant distribution

πY ((i1, i2, · · · ir )) = π(i1)pi1,i2 · · · pir−1,ir .

Theorem
For a positive recurrent irreducible Markov chain (Xn)n≥0, positive integer
r and and a bounded f on I r

lim
n→∞

1

n

∑
k<n

f (Xk ,Xk+1, · · · ,Xk+r−1)→
∑
i∈I r

f (i)π(i1)pi1,i2 · · · pir−1,ir

a.s. over all initial distributions.


